Товари для рукоділля
 

Астрономія: Випромінювання небесних світил. Методи астрономічних спостережень


Скачати файл

Поділитись з друзями:
 
 

Астрономія — наука всехвильова. Галузь астрономії, яка вивчає Всесвіт у видимому світлі, називається оптичною.
Але видиме світло займає лише маленьку ділянку електромагнітного спектра, куди входять також радіохвилі, інфрачервоне, ультрафіолетове, рентгенівське та гамма-випромінювання - різні за довжиною (чи частотою) електромагнітні хвилі.


Крізь товщу атмосфери до поверхні Землі доходить лише видиме світло з довжиною хвиль від 390 до 760 нм, радіохвилі з довжиною від 0,01 см до 30 м (мал. 11.1) та інфрачервоні промені довжиною 0,75 -5,2 мкм і вибірково в довжинах хвиль 8,2 - 22 мкм. В інших діапазонах електромагнітних хвиль земна атмосфера непрозора.


З XIX ст. астрономи почали вивчати космічні об'єкти в доступних інфрачервоних променях. А в 30-х роках XX ст. зародилася нова галузь астрономії - радіоастрономія, справжній розвиток якої почався після другої світової війни. Та оскільки небесні тіла випромінюють у всьому діапазоні електромагнітного спектра, перед астрономами постала задача проведення досліджень поза межами атмосфери.


Порівняно просто ця задача вирішується для інфрачервоного та субміліметрового випромінювання з довжинами хвиль від 0,013 мм до 1 мм. Основна речовина, що поглинає інфрачервону радіацію, -це водяна пара, концентрація якої швидко зменшується з висотою. На висотах 25-30 км земна атмосфера стає прозорою для інфрачервоного випромінювання. Важливі спостереження в цьому діапазоні проводяться з аеростатів і з борту штучних супутників Землі.
 
В короткохвильовій частині спектра виділяють окремо діапазони ультрафіолетової астрономії (довжина хвилі 390-30 нм), рентгенівської астрономії (30-0,01 нм) і галша-астрономії (довжина хвилі менша за 0,01 нм), кожна з яких має свої методи досліджень.


Важливу інформацію про те, що діється далеко за межами Землі, доносять до нас потоки космічних променів і нейтрино. Космічні промені складаються головним чином з протонів - ядер водню, а також з електронів, ядер гелію і ядер важчих хімічних елементів.


Нейтрино - це частинка, яка має неймовірну проникну здатність, бо майже не взаємодіє з речовиною. Не маючи електричного заряду, з масою спокою, ще й досі достовірно не встановленою, нейтрино здатне проходити крізь тверде тіло навіть легше, ніж світло крізь скло. Наприклад, шар свинцю товщиною в 50 світлових років воно перетне так, немов це порожній простір.

Утворюючись під час термоядерних реакцій, нейтрино негайно вилітає назовні, несучи інформацію про події у надрах зорі в поточний момент, тоді як електромагнітне випромінювання мандрує до поверхні зорі сотні тисяч чи мільйони років. А тому методи нейтринної астрономії дуже важливі для вивчення процесів, що відбуваються у надрах Сонця і зір.

 
Таким чином, з другої половини XX ст. астрономія стала всехвильо-вою наукою, яка вивчає Всесвіт практично в усьому діапазоні електромагнітних хвиль.


Наземні оптичні телескопи. Телескоп має три основних призначення: збирати випромінювання від небесних світил на приймальний пристрій (око, фотопластинка, спектрограф тощо); будувати у своїй фокальній площині зображення об'єкта чи певної ділянки неба; збільшувати кут зору, під яким спостерігаються небесні тіла, тобто розділяти об'єкти, розташовані на близькій кутовій відстані й тому нероздільні неозброєним оком.


Оптичні телескопи обов'язковими складовими частинами своєї конструкції мають: об'єктив, який збирає світло і будує у фокусі зображення об'єкта чи ділянки неба; трубу (тубус), яка з'єднує об'єктив з приймальним пристроєм; монтування - механічну кострукцію, що тримає трубу і забезпечує її наведення на небо; у разі візуальних спостережень, коли приймачем світла є око, обов'язково - окуляр. Через нього розглядається зображення, побудоване об'єктивом. При фотографічних, фотоелектричних, спектральних спостереженнях окуляр не потрібний, тому що відповідні приймачі встановлюються безпосередньо у фокальній площині. Першими було збудовано лінзові телескопирефрактори (від лат. «рефракто» - «заломлюю»). Проте світлові промені різних довжин хвиль заломлюються по-різному, і окрема лінза дає забарвлене зображення. Для усунення цього недоліку з часом почали будувати об'єктиви з кількома лінзами зі скла з різними коефіцієнтами заломлення.

На розміри телескопів-рефракторів накладаються певні обмеження, тому найбільший лінзовий об'єктив має діаметр лише 102 см.
Рефрактори, як правило, використовують в астрометрії, а от астрофізики користуються дзеркальними телескопами-рефлекторами (від лат. «рефлекто» - «відбиваю», мал. 11.4). Перший такий телескоп з діаметром дзеркала 2,5 см побудував І. Ньютон. Головні дзеркала рефлекторів спочатку мали сферичну форму, згодом - параболічну. 

Дзеркала виготовляли із бронзи. З середини XIX ст. почали робити скляні дзеркала і розробили метод зовнішнього сріблення скляних дзеркал, а з 1930 р. їх почали алюмініювати. Дуже зручною, а тому і найчастіше вживаною, була система Кассегрена, в якій головне дзеркало - увігнуте параболічне, а допоміжне - опукле гіперболічне; проте телескопи і павільйони, в яких їх встановлювали, були надзвичайно громіздкими.


Наприклад, з 1948 по 1975 р. найбільшим у світі був 5-метровий рефлектор Паломарської обсерваторії (СІЛА). Вага його дзеркала -13 т, маса труби (точніше, ґратчастої конструкції) довжиною 17 м -140 т, телескоп було встановлено у башті діаметром 41,5 м з вагою купола 1 000 т. У 1975 р. на Північному Кавказі було введено в дію 6-метровий телескоп; за товщини дзеркала 65 см його вага становить 40 т, довжина «труби» - 24 м, діаметр башти - 44 м.


Справжня революція в телескопобудуванні відбулась у 70-х роках XX ст. На зміну системі Кассегрена прийшла телескопічна система Річі-Кретьєна, у якій головне дзеркало за формою дещо відрізняється від параболоїда, а допоміжне - від гіперболоїда. Тому і довжина труби, і діаметри павільйонів у два - чотири рази менші, ніж у попередніх телескопів. На 2000 рік введено в дію

близько десяти телескопів системи Річі-Кретьєна з діаметром дзеркал 3,6-4,2 м. З 1996 р. працює багатодзеркальний (діаметр сегмента становить 1,8 м) телескоп «Кек-І» з сумарним.діаметром дзеркала 10 м, а з 1998 р. - такий же «Кек-ІІ». Введено в дію «Джеміні» з діаметром дзеркала 8,1 м та японський «Субару» з діаметром дзеркала 8,3 м. З 1998 р. почергово вводяться в дію одне із шести (діаметром 8,2 м) дзеркал «Дуже великого телескопа».
 
При побудові таких телескопів використовуються найновітніші досягнення техніки, і працюють вони, керовані на відстані зі спеціальних приміщень, без присутності людей поблизу телескопа.

 
Вітаємо вас на сайті forfun.pp.ua . Зараз ви переглядаєте матеріал під назвою "Астрономія: Випромінювання небесних світил. Методи астрономічних спостережень", який є одним з архіву нашої безкоштовної бібліотеки. На сторінках нашого сайту ви знайдете більше 5000 ГДЗ, творів, конспектів, презентацій, переказів і багато іншого. На нашому сайті вам доступний швидкий пошук і звичайно безкоштовний доступ до будь-якого матеріалу. Легкого вам навчання.
 
 
Додавати коментарі можуть лише зареєстровані користувачі!
Реєстрація | Вхід